Ostukorv on tühi

Kogus:
0

Kokku:
0

Mathematics 4.

Table of contents
MULTIPLICATION IN WORDS
How many hats are there on the heads
of all the dragons?
7 + 7 + 7 =
If all the factors of an addition are the
same number, we can use multiplication.
3 \latex{ \times} 7 =
=
There are
hats on the dragons.
The names of all the factors in the multiplication:
3 \latex{ \times} 7 = 21
factors
product
21
21
{{exercise_number}}. Fill in the missing numbers.
2·7=
9·4=
8·6=
7·7=
5·6=
3·8=
·3=18
·4=28
·2=16
=24
=15
=18
14
36
48
49
30
24
6
3
2
6
7
8
{{exercise_number}}. Write it down with an operation, then finish the calculation.
The product of 6 and 7:
Six time more than 5:
Four times seven:
Seven times 9:
Eight times 3:
One times 8:
Zero times 3:
Nine times ten:
6·7=42
6·5=30
4·7=30
7·9=63
8·3=24
1·8=8
0·3=0
9·10=90
{{exercise_number}}. Calculate the products
17·8=10·8+7·8=
+
=
13·6=
32·4=
25·3=
46·7=
28·9=
26·5=
19·4=
80
56
136
78
10·4+9·4=40+36=76
128
75
322
20·5+6·5=100+30=130
20·9+8·9=180+72=252
a)
b)
{{exercise_number}}. Which one is more? Use the right (<,>,=) relational sign.
12·4
10·5
23·4
24·3
34·3
13·7
9·11
2·43
24·5
23·6
15·2
12·5
<
<
>
<
>
<
48
50
91
99
60
30
138
120
86
102
92
72
How many cookies are there on the table?
If we switch the factors of a product, the product does not change.
Bob sees 6 rows
with 4 cookies in
each row.
6 \latex{ \times} 4 =
They both see
cookies.
6 \latex{ \times} 4 = 4 \latex{\times } 6
Gabe sees 4 rows
with 6 cookies in
each row.
4 \latex{ \times} 6 =
24
24
24
{{exercise_number}}.  Fill in the missing numbers.
6·8=8·
3·9=9·
4·7=7·
9·34=
25·6=
17·3=
10·
·1=1·30
=20·3
=6·10
·17
·25
·9
6
3
4
34
6
3
6
20
30
{{exercise_number}}. 
An office bought 3 boxes of CD-s.
There were 6 packs in each box,
with 5 CD-s in each pack.
How many CD-s did the office buy?
We can count this way:
One box contains 6 \latex{\times } 5 CD-s,
3 such boxes contains
3 \latex{ \times} (6 \latex{\times } 5) =
3 \latex{ \times} 30 =
= 90;
or this way:
3 boxes contain 3 \latex{\times } 6 pack, with 5 CD-s in each pack,
altogether (3 \latex{ \times} 6) \latex{\times } 5 =
18 \latex{\times } 5 =
= 90
3 \latex{ \times} (6 \latex{\times } 5) = (3 \latex{ \times} 6) \latex{\times } 5.
In case of a multi factor product, the product does not change if we group the factors differently.
{{exercise_number}}. Calculate in a clever way.
7·(5·4)=7·20=
5·20·9=
9·6·5=
3·15·4=
4·25·5=
3·5·8=
100·9=900
140
9·30=270
3·60=180
100·5=500
3·40=120
{{exercise_number}}.  How much is it worth?
7 \latex{ \times}
7 \latex{ \times}
7 \latex{ \times}
7 \latex{ \times}
1 ¢  =
10 ¢  =
100 ¢  =
€1,000 =
¢
¢
¢
7
70
700
7000
{{exercise_number}}. 
a) Write all the two digit numbers where the tens digit is two less than the units digit 
in the first row of the table.
b) Write down ten times
and a hundred times
the numbers.
Observe, how the
product changes.
13·10=
13·100=
24· 10=
24·100=
13
130
1300
24
240
2,400
35
350
3,500
46
460
4,600
57
570
5,700
68
680
6,800
79
790
7,900
\latex{ \times}10
\latex{ \times}100
\latex{ \div}10
\latex{ \div}100
130
1300
240
2400
\latex{ \times}10
\latex{ \times}100
\latex{ \div}10
\latex{ \div}100
If one of the factors is multiplied by a number - the other factor is unchanged -,then the product is also multiplied by that number.
If one of the factors is divided by a number - the other factor is unchanged -,than the product is also divided by that number.
{{exercise_number}}. 
a) Complete the calculations.
If a number times ten is 750, then times a hundred is
10·
=750
100·
=
7500
If a number times ten is 90, one thousand times is
If a number times a hundred is 2,800, ten times is
If a number times one thousand is 7,000, one hundred times is
9000
280
700
b) What numbers could the letters stand for?
46 \latex{ \times } A =     460
46 \latex{ \times } B =     4,600
A=
B=
D=
C=
37 \latex{ \times } D =     3,737
37 \latex{ \times } C =     3,700
10
100
101
100
{{exercise_number}}. Complete the calculations.
4 \latex{ \times } 200 =
4 \latex{ \times } 2,000 =
2,000 \latex{ \times } 5 =
200 \latex{ \times } 5 =
3 \latex{ \times } 300 =
3 \latex{ \times } 3,000 =
800
8000
10000
1000
900
9000
{{exercise_number}}. Fill in the missing numbers.
7
9
4
5
6
3
\latex{ \times }8
\latex{ \times }100
\latex{ \times }800
\latex{ \times }300
\latex{ \times }3000
\latex{ \times }1000
\latex{ \times }100
\latex{ \times }100
\latex{ \times }9
\latex{ \times }4
\latex{ \times }2
5,600
2,700
12,000
6,000
2,000
5,400
56
27
12
6
20
54
\latex{ \times }
\latex{ \times }
\latex{ \times }
\latex{ \times }
\latex{ \times }
\latex{ \times }
\latex{ \times }
3
400
2,000
1,000
100
3
900
a)
b)
{{exercise_number}}. Fill out the tables.
\latex{ \times }
\latex{ \times }
20
200
40
400
3
1
9
7
4
8
5
300
700
0
150
560
60
20
180
140
1,400
1,800
200
600
120
40
360
280
2,800
3,600
400
1,200
0
0
0
3,500
5,600
2,800
280
350
1,500
2,400
1,200
120
240
0
30
70
{{exercise_number}}. Solve the multiplications.
48 \latex{ \times } 2 =
48 \latex{ \times } 20 =
48 \latex{ \times } 200 =
23 \latex{ \times } 400 =
23 \latex{ \times } 40 =
23 \latex{ \times } 4 =
17 \latex{ \times } 3 =
17 \latex{ \times } 30 =
17 \latex{ \times } 300 =
96
960
9600
9200
920
92
51
510
5100
{{exercise_number}}. Calculate according to the sample.
6 times a number is 246. What is it 60 times?
5 times a number is 715. What is it 50 times?
300 times a number is 7,200. What is it 3 times?
40 times a number is 3,280. What is it 4 times?
=246
60·
=
2460
{{exercise_number}}. Complete the calculations, by breaking up the factors as shown in the samples.
4 \latex{ \times } 56;   270 \latex{ \times } 3;   2,007 \latex{ \times } 3;   380 \latex{ \times } 4;   510 \latex{ \times } 7;   180 \latex{ \times } 3;   5 \latex{ \times } 490;   4 \latex{ \times } 2,030
207 \latex{ \times } 3 = 200 \latex{ \times } 3 + 7 \latex{ \times } 3 = 600 + 21 = 621
4 \latex{ \times } 506 = 4 \latex{ \times } 500 + 4 \latex{ \times } 6 =
4 \latex{ \times } 560 = 4 \latex{ \times } 500 + 4 \latex{ \times } 6 =
+
+
=
=
2000
24
2024
2000
240
2240
{{exercise_number}}. Complete the calculations.
63 \latex{ \times } 40 =
58 \latex{ \times } 60 =
290 \latex{ \times } 20 =
170 \latex{ \times } 30 =
63·4·10=
·10=
200·20+90·20=
+
=
100·30+70·30=3000+2100=5100
58·6·10=348·10=3480
4000
1800
5800
252
2520
a)
b)
c)
13 \latex{ \times } 50
17 \latex{ \times } 40
26 \latex{ \times } 30
240 \latex{ \times } 20
180 \latex{ \times } 50
310 \latex{ \times } 30
{{exercise_number}}. 
  1. 140 plants are planted in one row. How many plants are there in 30 rows?
  2. A box of ice cream is 500 g. How much do 15 boxes weigh?
  3. One salami weighs 1,200 g. How much do 3 salamis weigh?
{{exercise_number}}. Follow the sample, and do the calculations simply.
a)
b)
17 \latex{ \times } 6 + 17 \latex{ \times } 4 = 17 \latex{ \times } (6 + 4) = 17 \latex{ \times } 10 = 170
9 \latex{ \times } 150 = 10\latex{ \times }150\latex{ - }1\latex{ \times }150 = 1500\latex{ - }150 = 1350
62 \latex{ \times } 15 + 62 \latex{ \times } 85 =
128 \latex{ \times } 3 + 128 \latex{ \times } 7 =
46 \latex{ \times } 89 + 54 \latex{ \times } 89 =
450 \latex{ \times } 7 + 550 \latex{ \times } 7 =
9 \latex{ \times } 410=
99 \latex{ \times } 53=
4 \latex{ \times } 748=
5 \latex{ \times } 249=
62·(15+85)=62·100=6200
128·(3+7)=128·10=1280
89·(46+54)=89·100=8900
7·(450+550)=7·1000=7000
10·410-1·410=4100-410=3690
100·53-1·53=5300-53=5247
4·750-4·2=3000-8=2992
5·250-5·1=1250-5=1245
{{exercise_number}}. Fill in the missing numbers. Compare the products.
12·4=
200·9=
150·7=
·
·
·
=
=
48
24
2
=48
20
90
1800
50
21
1050
1050
1050
1800
\latex{ \times }2
\latex{ \times }10
\latex{ \times }3
\latex{ \div }3
\latex{ \div }10
\latex{ \div }2
The product is unchanged if one of the factors is multiplied by a number, while the the other factor is divided by the same number.
{{exercise_number}}. Fill in the numbers to make the statements true. Complete the calculations.
=
=
=
=
=
=
=
=
74 \latex{ \times } 20 = 74 \latex{ \times }2\latex{ \times }
39 \latex{ \times } 100 = 390 \latex{ \times }
71 \latex{ \times } 100 = 
87 \latex{ \times } 100 = 
 \latex{ \times } 10
 \latex{ \times } 10
76 \latex{ \times } 100 = 760 \latex{ \times }
83 \latex{ \times } 50 = 83 \latex{ \times }5\latex{ \times }
64 \latex{ \times } 30 = 64 \latex{ \times }3\latex{ \times }
97 \latex{ \times } 40 = 97 \latex{ \times }4\latex{ \times }
10
7600
3900
7100
8700
870
710
10
10
10
10
10
3880
1920
4150
1480
{{exercise_number}}. 
At the shop they wrote down, how many of each drink they sold. How much was
the daily sale of each drink? Fill out the table.
soft drink
juice
tea
water
amount
sold
income
¢
db
db
db
db
¢
¢
¢
PRICES
soft drink
juice
tea
45 ¢
53 ¢
23 ¢
water
30 ¢
11
12
16
18
540
368
636
495
{{exercise_number}}. Which one is more? Use the right relational sign.
3,700 \latex{ \times } 2
460 \latex{ \times } 5
230 \latex{ \times } 10
370 \latex{ \times } 20
(570\latex{ - }230) \latex{ \times } 5
410 \latex{ \times } 2 + 160 \latex{ \times }4
490 \latex{ \times } 2 
570 \latex{ \times } 5 \latex{ - } 230
=
=
>
<
{{exercise_number}}. 
A package of cookies is 120 ¢. If you spend over 2,500 ¢ you get a discount of 250 ¢.
Fill out the table with the help of the flow diagram.
package
package · 120 ¢
Does
the value exceed
2,500 ¢?
amount
to be paid
250 ¢
yes
no
when buying 30 bags:
30 \latex{ \times }120 ¢= 3,600 ¢.
3,600 ¢ > 2,500 ¢, you get the discount
3,600 ¢ \latex{ - } 250 ¢ =
package
value
amount
(¢)
(¢)
(
)
3350
¢
30
20
25
9
10
40
22
7,200
6700
4800
4,800
6,000
5,500
2,160
2,160
2,400
2,400
9,600
9,100
4,780
5,280
How many bags of cookies can we buy for 2,500 ¢?
22
{{exercise_number}}. Calculate two and three times the values rounded to hundreds.
1,578 \latex{ \approx } 1,600
1,600 \latex{ \times } 2 = 1,000 \latex{ \times } 2 + 600 \latex{ \times } 2 = 2,000 + 1,200 = 3,200
1,600 \latex{ \times } 3 = 1,000 \latex{ \times } 3 + 600 \latex{ \times } 3 = 3,000 + 1,800 = 4,800
948
1,219
2,841
2,063
3,104
1,628
{{exercise_number}}. Put the products in increasing order, read their letters together.
S
A
N
O
W
M
N
1,300 \latex{ \times } 2
2,100 \latex{ \times } 3
1,000 \latex{ \times } 4
990 \latex{ \times } 5
1,700 \latex{ \times } 3
1,100 \latex{ \times } 5
4,700 \latex{ \times } 2
Solution:
Snowman
nfki_banner