
b) Pete compares the offers of different insurance companies. He fills a table with the collected data and writes an algebraic expression that a program can use to calculate the insurance costs. Write down this algebraic expression if the holiday lasts for \latex{ n } \latex{ days } and the insurance costs \latex{ b } \latex{ euros } \latex{ per } \latex{ person } \latex{ per } \latex{ day. }
c) True Travel offers a \latex{15}% family discount. Calculate the reduced price and express it using an algebraic expression.
d) Joyful Journey offers \latex{ seven }-\latex{ day } travel insurance at €\latex{ 1.8 } \latex{ per } \latex{ person } \latex{ per } \latex{ day. } If the company also offers a \latex{ 15 }% family discount, how much should a family of four pay for a \latex{ one }-\latex{ week } holiday?
Answer: The travel insurance costs €\latex{ 56 } for a family of four for seven \latex{ days. }
b) The cost of the insurance
for \latex{ one } \latex{ person } for \latex{ one } \latex{day} is \latex{b} \latex{ euros }
for \latex{ one } \latex{ person } for \latex{n} \latex{days}: \latex{n\times b=nb}
for \latex{ four } \latex{ people } for \latex{n} \latex{days}: \latex{4\times n\times b=4nb}
Answer: The cost of the insurance for a family of four can be calculated using the algebraic expression \latex{ 4nb }.
Answer: The cost of the insurance with the discount is €\latex{ 47.6 }, which can be represented by the algebraic expression \latex{ 3.4 nb} \latex{euros}.
d) The offer from Joyful Journey differs from that of True Travel only in the daily price. Therefore, the algebraic expression \latex{ 3.4nb } can be used for the calculation.
In this expression, \latex{ n =7 } and \latex{ b = 1.8 }.
\latex{3.4 \,nb = 3.4 \times 7 \times 1.8 = 42.84}
Answer: The family should pay €\latex{42.84} at Joyful Journey.
\latex{ 2011 } is a prime number
\latex{ 2012 = 2^2 \times 503 }, where \latex{ 503 } is a prime number
a) In the expressions that are formed by a group of terms, the like terms can be combined.
c) A product can be rewritten as a power.
IV. Exponential terms with the same base can be multiplied.
In algebraic expression e) and III. the multiplication can be converted into an addition.
d) Express the fractions with a common denominator.

- Five times the sum of \latex{ x } and \latex{ y. }
- The difference between five times \latex{ x } and \latex{ y }.
- The difference between the number that is \latex{7} more than \latex{ x } and \latex{ y. }
- The product of the number that is \latex{ 40 }% less than \latex{ x } and the number that is \latex{ 40 }% more than \latex{ y. }
- The number that is \latex{ 10 }% more than the sum of \latex{ x } and \latex{ y. }
- How much do you have to pay in total for \latex{ n } number of tickets, including the landing fees?
- Due to rising fuel prices, the price of the ticket has been increased by \latex{ 10 }%, while the landing fee has remained the same. How much do you have to pay now for \latex{ n } number of tickets, including the landing fees?
- How much more do you have to pay for \latex{ n } number of tickets if both the landing fee and the price of the ticket have been increased by \latex{ 10 }%?
- If you buy at least \latex{5} tickets, then you do not have to pay the landing fee for \latex{ k } number of tickets, where \latex{ k \lt 5 }. How much do you have to pay in total for \latex{ n } tickets if \latex{ n\geq5 ?}
- \latex{ \frac{6x\times10x}{4} }
- \latex{ \frac{6x+10x}{4} }
- \latex{ \frac{9xy+21xy}{3} }
- \latex{ \frac{9xy \times 21xy}{3} }
- \latex{ 4a+6a-12a+7a }
- \latex{ -5b+3b-9b + 2b }
- \latex{ 11c-3c-5c-3c }
- \latex{-9d+10d-5d+6d}
- \latex{ 5x-4+2x-7-6x+9 }
- \latex{ 4-5y-5+2y+2-6y }
- \latex{ 6v+2c-3v-1-7v+7 }
- \latex{ 10-5z+4+4z-15-2z }
- \latex{ 5a+3b-4a-4b+2 }
- \latex{ -3c+2d+3-5c+2d-9 }
- \latex{ 2e-4f+9-7e-4f+3 }
- \latex{ -5g-9h-6-7g-8-5h }
- \latex{ 3a+2b+(3a-2b) }
- \latex{ 3a+2b-(3a-2b) }
- \latex{ 3a-2b-(3a-2b) }
- \latex{ -3a-2b-(3a+2b) }
- \latex{ (2x+5y)+(4x-3y)-(2x-3y) }
- \latex{ 2x+(5y-4x)-(3y-2x)-3y }
- \latex{ -2x-(5y+4x)-(3y-2x+3y) }
- \latex{ 2x-(5y-4x-3y)+(2x+3y) }
- \latex{ 4\times(a+5) }
- \latex{ 5\times(2b-3) }
- \latex{ 2(3-c) }
- \latex{ 4(2-3d) }
- \latex{ -2(2e+3) }
- \latex{ -5(3f-2) }
- \latex{ -6(3-g) }
- \latex{ -3(4-2h) }
- \latex{ 5(x+1)+3(x-2) }
- \latex{ 6(3-2y)+2(1-4y) }
- \latex{ 4(3v-1)+(3-4v) }
- \latex{ 2(3z-2)+3(3-2z) }
- \latex{ 3(4x+1)-2 \times (3x+2) }
- \latex{ 4(1-4y)-3(1+y) }
- \latex{ -2(3v+1)+3\times (4-v) }
- \latex{ -5(2z-3)-2(3-5z) }
- \latex{ y(2x - 3)- y(x + 1) }
- \latex{ 2a(2x + 3y)- a(3x - y) }
- \latex{ 5x(x - y)- y(2x + y) }
- \latex{ -3b(4b-3a)-2(ab+5b^2) }
- \latex{ [(x- y)- (y + x)] \times 2}
- \latex{ a(a- b)- b(b- a)}
- \latex{ \frac{a-b}{2} + \frac{2b}{4}}
- \latex{ 2(x^2- y^2)- x(2x + 1)+ x}
- if \latex{ x = 0.19} and \latex{y = \frac{1}{4} }
- if \latex{ a = 10} and \latex{b = 0.7}
- if \latex{ a = 20} and \latex{b = 0.19}
- if \latex{ x = \frac{2}{3}} and \latex{y =-1}
- \latex{ 5x^2y + \fcolorbox{black}{#eaf1fa}{\textcolor{#eaf1fa}{O}} = 11x^2y}
- \latex{5ab - \fcolorbox{black}{#eaf1fa}{\textcolor{#eaf1fa}{O}} +3ab = 4ab}
- \latex{3x^2-y^2 + \fcolorbox{black}{#eaf1fa}{\textcolor{#eaf1fa}{O}} = x^2-y^2}
- \latex{ 2a- \fcolorbox{black}{#eaf1fa}{\textcolor{#eaf1fa}{O}} = 10a}
- \latex{ \frac{xy}{2} + \fcolorbox{black}{#eaf1fa}{\textcolor{#eaf1fa}{O}} = 3xy}
- \latex{ 2x^2y- \frac{1}{2} yx^2 -\fcolorbox{black}{#eaf1fa}{\textcolor{#eaf1fa}{O}} = 5x^2y}
- \latex{ \frac{x}{3}-\frac{x}{4} }
- \latex{ \frac{y-1}{4} + \frac{y}{2} }
- \latex{ \frac{a+b}{2} + \frac{a-b}{2} }
- \latex{ \frac{x+1}{2}-\frac{x-1}{2} }
- \latex{ \frac{2c+1}{4}-\frac{2c-1}{2} }
- \latex{ \frac{x-2y}{3}-\frac{2x-y}{2} }
- \latex{ \frac{a}{3} + \frac{2a}{5} }
- \latex{ \frac{3b}{4}-\frac{2b}{3} }
- \latex{ \frac{c}{2} + \frac{2c+3}{3} }
- \latex{ \frac{d+1}{2} + \frac{2d}{5} }
- \latex{ e -\frac{2e-1}{3} }
- \latex{ \frac{2f+1}{5} - \frac{1-f}{3} }
- \latex{ \frac{2g+3}{4} - \frac{3g+1}{2} }
- \latex{ \frac{3h+2}{3} - \frac{5h+4}{5} }


